Friday, May 17, 2024
HomeHealth EconomicsFunctions of SGLT2 inhibitors past glycaemic management

Functions of SGLT2 inhibitors past glycaemic management


  • McGuire, D. Okay. et al. Affiliation of SGLT2 inhibitors with cardiovascular and kidney outcomes in sufferers with kind 2 diabetes: a meta-analysis. JAMA Cardiol. 6, 148–158 (2021).

    Article 

    Google Scholar
     

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/research/NCT04564742 (2023).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/research/NCT04509674 (2023).

  • McDonagh, T. A. et al. 2021 ESC pointers for the prognosis and therapy of acute and power coronary heart failure. Eur. Coronary heart J. 42, 3599–3726 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the administration of coronary heart failure: government abstract: a report of the American Faculty of Cardiology/American Coronary heart Affiliation Joint Committee on Scientific Follow Pointers. J. Am. Coll. Cardiol. 79, 1757–1780 (2022).

    Article 

    Google Scholar
     

  • UK Kidney Affiliation. UK Kidney Affiliation medical observe guideline: sodium-glucose co-transporter-2 (SGLT-2) inhibition in adults with kidney illness.https://ukkidney.org/websites/renal.org/recordsdata/UKKApercent20guideline_SGLT2ipercent20inpercent20adultspercent20withpercent20kidneypercent20diseasepercent20v1percent2020.10.21.pdf (2021).

  • Cowie, M. R. & Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular profit past glycaemic management. Nat. Rev. Cardiol. 17, 761–772 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Youssef, M. E. et al. Unlocking the total potential of SGLT2 inhibitors: increasing purposes past glycemic management. Int. J. Mol. Sci. 24, 6039 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Curthoys, N. P. & Moe, O. W. Proximal tubule perform and response to acidosis. Clin. J. Am. Soc. Nephrol. 9, 1627–1638 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hou, Y. C., Zheng, C. M., Yen, T. H. & Lu, Okay. C. Molecular mechanisms of SGLT2 inhibitor on cardiorenal safety. Int. J. Mol. Sci. 21, 7833 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Heerspink, H. J., Perkins, B. A., Fitchett, D. H., Husain, M. & Cherney, D. Z. Sodium glucose cotransporter 2 inhibitors within the therapy of diabetes mellitus: cardiovascular and kidney results, potential mechanisms, and medical purposes. Circulation 134, 752–772 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cherney, D. Z., Kanbay, M. & Lovshin, J. A. Renal physiology of glucose dealing with and therapeutic implications. Nephrol. Dial. Transpl. 35, i3–i12 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zaccardi, F. et al. Efficacy and security of sodium-glucose co-transporter-2 inhibitors in kind 2 diabetes mellitus: systematic assessment and community meta-analysis. Diabetes Obes. Metab. 18, 783–794 (2016).

    Article 
    CAS 

    Google Scholar
     

  • DeFronzo, R. A. et al. Characterization of renal glucose reabsorption in response to dapagliflozin in wholesome topics and topics with kind 2 diabetes. Diabetes Care 36, 3169–3176 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ojima, A., Matsui, T., Nishino, Y., Nakamura, N. & Yamagishi, S. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic results on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Horm. Metab. Res. 47, 686–692 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Dapagliflozin alleviates superior glycation finish product induced podocyte harm by means of AMPK/mTOR mediated autophagy pathway. Cell Sign. 90, 110206 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, M. C. & Cherney, D. Z. I. The actions of SGLT2 inhibitors on metabolism, renal perform and blood stress. Diabetologia 61, 2098–2107 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cravedi, P. & Remuzzi, G. Pathophysiology of proteinuria and its worth as an consequence measure in power kidney illness. Br. J. Clin. Pharmacol. 76, 516–523 (2013).

    Article 

    Google Scholar
     

  • Karg, M. V. et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content material: a randomised managed trial. Cardiovasc. Diabetol. 17, 5 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hallow, Okay. M., Helmlinger, G., Greasley, P. J., McMurray, J. J. V. & Boulton, D. W. Why do SGLT2 inhibitors scale back coronary heart failure hospitalization? A differential quantity regulation speculation. Diabetes Obes. Metab. 20, 479–487 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Uthman, L. et al. Class results of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, decreasing of cytosolic Na(+) and vasodilation. Diabetologia 61, 722–726 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Trum, M., Riechel, J. & Wagner, S. Cardioprotection by SGLT2 inhibitors-does all of it come right down to Na+? Int. J. Mol. Sci. 22, 7976 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Peyton, Okay. J., Behnammanesh, G., Durante, G. L. & Durante, W. Canagliflozin inhibits human endothelial cell irritation by means of the induction of heme oxygenase-1. Int. J. Mol. Sci. 23, 8777 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Campbell, N. Okay., Fitzgerald, H. Okay. & Dunne, A. Regulation of irritation by the antioxidant haem oxygenase 1. Nat. Rev. Immunol. 21, 411–425 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Consoli, V., Sorrenti, V., Grosso, S. & Vanella, L. Heme oxygenase-1 signaling and redox homeostasis in physiopathological circumstances. Biomolecules 11, 589 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gager, G. M. et al. Results of SGLT2 inhibitors on ion homeostasis and oxidative stress related mechanisms in coronary heart failure. Biomed. Pharmacother. 143, 112169 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Oraby, M. A., El-Yamany, M. F., Safar, M. M., Assaf, N. & Ghoneim, H. A. Dapagliflozin attenuates early markers of diabetic nephropathy in fructose-streptozotocin-induced diabetes in rats. Biomed. Pharmacother. 109, 910–920 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ye, Y., Bajaj, M., Yang, H. C., Perez-Polo, J. R. & Birnbaum, Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the event of diabetic cardiomyopathy in mice with kind 2 diabetes. Additional augmentation of the consequences with saxagliptin, a DPP4 inhibitor. Cardiovasc. Medicine Ther. 31, 119–132 (2017).

    Article 

    Google Scholar
     

  • Niu, Y. et al. Canagliflozin ameliorates NLRP3 inflammasome-mediated irritation by means of inhibiting NF-kappaB signaling and upregulating Bif-1. Entrance. Pharmacol. 13, 820541 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Abdollahi, E. et al. Dapagliflozin exerts anti-inflammatory results through inhibition of LPS-induced TLR-4 overexpression and NF-kappaB activation in human endothelial cells and differentiated macrophages. Eur. J. Pharmacol. 918, 174715 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Skrabic, R. et al. SGLT2 inhibitors in power kidney illness: from mechanisms to medical observe. Biomedicines 10, 2458 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Androutsakos, T. et al. SGLT-2 inhibitors in NAFLD: increasing their function past diabetes and cardioprotection. Int. J. Mol. Sci. 23, 3107 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lupsa, B. C., Kibbey, R. G. & Inzucchi, S. E. Ketones: the double-edged sword of SGLT2 inhibitors? Diabetologia 66, 23–32 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ferrannini, E. et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in topics with out diabetes and sufferers with kind 2 diabetes. Diabetes 65, 1190–1195 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Youm, Y. H. et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory illness. Nat. Med. 21, 263–269 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Swanson, Okay. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tomita, I. et al. SGLT2 inhibition mediates safety from diabetic kidney illness by selling ketone body-induced mTORC1 inhibition. Cell Metab. 32, 404–419.e6 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Heerspink, H. J. L. et al. Canagliflozin reduces irritation and fibrosis biomarkers: a possible mechanism of motion for helpful results of SGLT2 inhibitors in diabetic kidney illness. Diabetologia 62, 1154–1166 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary harm and fibrosis by a vascular endothelial development factor-dependent pathway after renal harm in mice. Kidney Int. 94, 524–535 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hesp, A. C. et al. The function of renal hypoxia within the pathogenesis of diabetic kidney illness: a promising goal for newer renoprotective brokers together with SGLT2 inhibitors? Kidney Int. 98, 579–589 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lauritsen, Okay. M. et al. SGLT2 inhibition doesn’t have an effect on myocardial fatty acid oxidation or uptake, however reduces myocardial glucose uptake and blood move in people with kind 2 diabetes: a randomized double-blind, placebo-controlled crossover trial. Diabetes 70, 800–808 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. M. et al. Cardiorenal safety of SGLT2 inhibitors – views from metabolic reprogramming. EBioMedicine 83, 104215 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sano, M. A brand new class of medication for coronary heart failure: SGLT2 inhibitors scale back sympathetic overactivity. J. Cardiol. 71, 471–476 (2018).

    Article 

    Google Scholar
     

  • Sano, M. Sodium glucose cotransporter (SGLT)-2 inhibitors alleviate the renal stress accountable for sympathetic activation. Ther. Adv. Cardiovasc. Dis. 14, 1753944720939383 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Scheen, A. J. Impact of SGLT2 inhibitors on the sympathetic nervous system and blood stress. Curr. Cardiol. Rep. 21, 70 (2019).

    Article 

    Google Scholar
     

  • Li, T., Chen, Y., Gua, C. & Wu, B. Elevated oxidative stress and irritation in hypothalamic paraventricular nucleus are related to sympathetic excitation and hypertension in rats uncovered to power intermittent hypoxia. Entrance. Physiol. 9, 840 (2018).

    Article 

    Google Scholar
     

  • Ye, S., Zhong, H., Yanamadala, S. & Campese, V. M. Oxidative stress mediates the stimulation of sympathetic nerve exercise within the phenol renal harm mannequin of hypertension. Hypertension 48, 309–315 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Manosroi, W., Danpanichkul, P. & Atthakomol, P. Impact of sodium-glucose cotransporter-2 inhibitors on aldosterone and renin ranges in diabetes mellitus kind 2 sufferers: a scientific assessment and meta-analysis. Sci. Rep. 12, 19603 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Seidu, S., Kunutsor, S. Okay., Topsever, P. & Khunti, Okay. Advantages and harms of sodium-glucose co-transporter-2 inhibitors (SGLT2-I) and renin-angiotensin-aldosterone system inhibitors (RAAS-I) versus SGLT2-Is alone in sufferers with kind 2 diabetes: a scientific assessment and meta-analysis of randomized managed trials. Endocrinol. Diabetes Metab. 5, e00303 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Neuen, B. L. et al. SGLT2 inhibitors for the prevention of kidney failure in sufferers with kind 2 diabetes: a scientific assessment and meta-analysis. Lancet Diabetes Endocrinol. 7, 845–854 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Iacobellis, G. & Gra-Menendez, S. Results of dapagliflozin on epicardial fats thickness in sufferers with kind 2 diabetes and weight problems. Weight problems 28, 1068–1074 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Camarena, V. et al. Novel atherogenic pathways from the differential transcriptome evaluation of diabetic epicardial adipose tissue. Nutr. Metab. Cardiovasc. Dis. 27, 739–750 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Díaz-Rodríguez, E. et al. Results of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine manufacturing, and differentiation capability. Cardiovasc. Res. 114, 336–346 (2018).

    Article 

    Google Scholar
     

  • Durante, W., Behnammanesh, G. & Peyton, Okay. J. Results of sodium-glucose co-transporter 2 inhibitors on vascular cell perform and arterial transforming. Int J. Mol. Sci. 22, 8786 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lescano, C. H. et al. The sodium-glucose cotransporter-2 (SGLT2) inhibitors synergize with nitric oxide and prostacyclin to scale back human platelet activation. Biochem. Pharmacol. 182, 114276 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dhingra, N. Okay. et al. SGLT2 inhibitors and cardiac remodelling: a scientific assessment and meta-analysis of randomized cardiac magnetic resonance imaging trials. ESC Coronary heart Fail. 8, 4693–4700 (2021).

    Article 

    Google Scholar
     

  • Herrington, W. G. et al. Cardiac, renal, and metabolic results of sodium-glucose co-transporter 2 inhibitors: a place paper from the European Society of Cardiology ad-hoc activity drive on sodium-glucose co-transporter 2 inhibitors. Eur. J. Coronary heart Fail. 23, 1260–1275 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cefalu, W. T. et al. Cardiovascular outcomes trials in kind 2 diabetes: the place will we go from right here? Reflections from a diabetes care editors’ knowledgeable discussion board. Diabetes Care 41, 14–31 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in kind 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wanner, C. et al. Empagliflozin and development of kidney illness in kind 2 diabetes. N. Eng. J. Med. 375, 323–334 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Nuffield Division of Inhabitants Well being Renal Research Group. SGLT2 inhibitor Meta-Evaluation Cardio-Renal Trialists’ Consortium. Influence of diabetes on the consequences of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of huge placebo-controlled trials. Lancet 400, 1788–1801 (2022).

    Article 

    Google Scholar
     

  • Perkovic, V. et al. Canagliflozin and renal outcomes in kind 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Heerspink, H. J. L. et al. Dapagliflozin in sufferers with power kidney illness. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Herrington, W. G. et al. Empagliflozin in sufferers with power kidney illness. N. Engl. J. Med. 388, 117–127 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in coronary heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McMurray, J. J. V. et al. Dapagliflozin in sufferers with coronary heart failure and diminished ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Anker, S. D. et al. Empagliflozin in coronary heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Solomon, S. D. et al. Dapagliflozin in coronary heart failure with mildly diminished or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).

    Article 

    Google Scholar
     

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/research/NCT05374291 (2023).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/research/NCT03819153 (2024).

  • US Nationwide Library of Medication. ClinicalTrials.gov https://clinicaltrials.gov/research/NCT05254002 (2024).

  • Heerspink, H. J. L. et al. Change in albuminuria as a surrogate endpoint for development of kidney illness: a meta-analysis of therapy results in randomised medical trials. Lancet Diabetes Endocrinol. 7, 128–139 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Heerspink, H. J. et al. Canagliflozin slows development of renal perform decline independently of glycemic results. J. Am. Soc. Nephrol. 28, 368–375 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Neal, B. et al. Canagliflozin and cardiovascular and renal occasions in kind 2 diabetes. N. Eng. J. Med. 377, 644–657 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in kind 2 diabetes. N. Eng. J. Med. 380, 347–357 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cannon, C. P. et al. Cardiovascular outcomes with ertugliflozin in kind 2 diabetes. N. Engl. J. Med. 383, 1425–1435 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bhatt, D. L. et al. Sotagliflozin in sufferers with diabetes and power kidney illness. N. Engl. J. Med. 384, 129–139 (2020).

    Article 

    Google Scholar
     

  • Mosenzon, O. et al. Results of dapagliflozin on growth and development of kidney illness in sufferers with kind 2 diabetes: an evaluation from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 7, 606–617 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Persson, F. et al. Efficacy and security of dapagliflozin by baseline glycemic standing: a prespecified evaluation from the DAPA-CKD trial. Diabetes Care 44, 1894–1897 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Afsar, B. et al. Sodium–glucose cotransporter inhibition in polycystic kidney illness: truth or fiction. Clin. Kidney J. 15, 1275–1283 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ujjawal, A., Schreiber, B. & Verma, A. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) in kidney transplant recipients: what’s the proof? Ther. Adv. Endocrinol. Metab. 13, 20420188221090001 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Neuen, B. L. et al. Impact of canagliflozin on renal and cardiovascular outcomes throughout totally different ranges of albuminuria: knowledge from the CANVAS Program. J. Am. Soc. Nephrol. 30, 2229–2242 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jardine, M. et al. Kidney, cardiovascular, and security outcomes of canagliflozin in response to baseline albuminuria: a CREDENCE secondary evaluation. Clin. J. Am. Soc. Nephrol. 16, 384–395 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Heerspink, H. J. L. et al. Impact of dapagliflozin on the speed of decline in kidney perform in sufferers with power kidney illness with and with out kind 2 diabetes: a prespecified evaluation from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 9, 743–754 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Inker, L. A. et al. A meta-analysis of GFR slope as a surrogate endpoint for kidney failure. Nat. Med. 29, 1867–1876 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kraus, B. J. et al. Characterization and implications of the preliminary estimated glomerular filtration charge ‘dip’ upon sodium-glucose cotransporter-2 inhibition with empagliflozin within the EMPA-REG OUTCOME trial. Kidney Int. 99, 750–762 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jongs, N. et al. Correlates and penalties of an acute change in eGFR in response to the SGLT2 inhibitor dapagliflozin in sufferers with CKD. J. Am. Soc. Nephrol. 33, 2094–2107 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sridhar, V. S., Tuttle, Okay. R. & Cherney, D. Z. I. We will lastly cease worrying about SGLT2 inhibitors and acute kidney harm. Am. J. Kidney Dis. 76, 454–456 (2020).

    Article 

    Google Scholar
     

  • Neuen, B. L. et al. Sodium-glucose cotransporter 2 inhibitors and danger of hyperkalemia in individuals with kind 2 diabetes: a meta-analysis of particular person participant knowledge from randomized, managed trials. Circulation 145, 1460–1470 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Charlwood, C., Chudasama, J., Darling, A. L., Logan Ellis, H. & Whyte, M. B. Impact of sodium-glucose co-transporter 2 inhibitors on plasma potassium: a meta-analysis. Diabetes Res. Clin. Pract. 196, 110239 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Halden, T. A. S. et al. Efficacy and security of empagliflozin in renal transplant recipients with posttransplant diabetes mellitus. Diabetes Care 42, 1067–1074 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Oliveras, L., Montero, N. & Cruzado, J. M. Looking out within the maze: sodium–glucose cotransporter-2 inhibitors in kidney transplant recipients to enhance survival. Clin. Kidney J. 16, 909–913 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Maffei, P., Bettini, S., Busetto, L. & Dassie, F. SGLT2 inhibitors within the administration of kind 1 diabetes (T1D): an replace on present proof and proposals. Diabetes Metab. Syndr. Obes. 16, 3579–3598 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Inzucchi, S. E. et al. Enchancment in cardiovascular outcomes with empagliflozin is unbiased of glycemic management. Circulation 138, 1904–1907 (2018).

    Article 

    Google Scholar
     

  • Inzucchi, S. E. et al. Cardiovascular good thing about empagliflozin throughout the spectrum of cardiovascular danger issue management within the EMPA-REG OUTCOME trial. J. Clin. Endocrinol. Metab. 105, 3025–3035 (2020).

    Article 

    Google Scholar
     

  • Tsai, P. C. et al. Impartial results of SGLT2 inhibitors in acute coronary syndromes, peripheral arterial occlusive illness, or ischemic stroke: a meta-analysis of randomized managed trials. Cardiovasc. Diabetol. 22, 57 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in sufferers with kind 2 diabetes: a scientific assessment and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lam, C. S. P. et al. Efpeglenatide and medical outcomes with and with out concomitant sodium-glucose cotransporter-2 inhibition use in kind 2 diabetes: exploratory evaluation of the AMPLITUDE-O trial. Circulation 145, 565–574 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pitt, B. & Bhatt, D. L. Does SGLT1 inhibition add profit to SGLT2 inhibition in kind 2 diabetes? Circulation 144, 4–6 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zannad, F. et al. SGLT2 inhibitors in sufferers with coronary heart failure with diminished ejection fraction: a meta-analysis of the EMPEROR-Decreased and DAPA-HF trials. Lancet 396, 819–829 (2020).

    Article 

    Google Scholar
     

  • Butler, J. et al. Empagliflozin and health-related high quality of life outcomes in sufferers with coronary heart failure with diminished ejection fraction: the EMPEROR-Decreased trial. Eur. Coronary heart J. 42, 1203–1212 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vaduganathan, M. et al. SGLT-2 inhibitors in sufferers with coronary heart failure: a complete meta-analysis of 5 randomised managed trials. Lancet 400, 757–767 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Butler, J. et al. Empagliflozin, well being standing, and high quality of life in sufferers with coronary heart failure and preserved ejection fraction: the EMPEROR-Preserved trial. Circulation 145, 184–193 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kosiborod, M. N. et al. Impact of dapagliflozin on well being standing in sufferers with preserved or mildly diminished ejection fraction. J. Am. Coll. Cardiol. 81, 460–473 (2023).

    Article 
    CAS 

    Google Scholar
     

  • McDonagh, T. A. et al. 2023 targeted replace of the 2021 ESC pointers for the prognosis and therapy of acute and power coronary heart failure. Eur. Coronary heart J. 44, 3627–3639 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Voors, A. A. et al. The SGLT2 inhibitor empagliflozin in sufferers hospitalized for acute coronary heart failure: a multinational randomized trial. Nat. Med. 28, 568–574 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bhatt, D. L. et al. Sotagliflozin in sufferers with diabetes and up to date worsening coronary heart failure. N. Engl. J. Med. 384, 117–128 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Berg, D. D. et al. Time to medical good thing about dapagliflozin and significance of prior coronary heart failure hospitalization in sufferers with coronary heart failure with diminished ejection fraction. JAMA Cardiol. 6, 499–507 (2021).

    Article 

    Google Scholar
     

  • Vaduganathan, M. et al. Time to medical good thing about dapagliflozin in sufferers with coronary heart failure with mildly diminished or preserved ejection fraction: a prespecified secondary evaluation of the DELIVER randomized medical trial. JAMA Cardiol. 7, 1259–1263 (2022).

    Article 

    Google Scholar
     

  • Provenzano, M. et al. POS-255 Impact of dapagliflozin on blood stress in sufferers with CKD: a pre-specified evaluation from DAPA-CKD. Kidney Int. Rep. 7, S112 (2022).

    Article 

    Google Scholar
     

  • Ye, N. et al. Blood stress results of canagliflozin and medical outcomes in kind 2 diabetes and power kidney illness. Circulation 143, 1735–1749 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Del Prato, S. et al. Lengthy-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on remedy to metformin in sufferers with kind 2 diabetes: 4-year knowledge. Diabetes Obes. Metab. 17, 581–590 (2015).

    Article 

    Google Scholar
     

  • Cheong, A. J. Y. et al. SGLT inhibitors on weight and physique mass: a meta-analysis of 116 randomized-controlled trials. Weight problems 30, 117–128 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cai, X. et al. The affiliation between the dosage of SGLT2 inhibitor and weight discount in kind 2 diabetes sufferers: a meta-analysis. Weight problems 26, 70–80 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Inzucchi, S. E. et al. Empagliflozin therapy results throughout classes of baseline HbA1c, physique weight and blood stress as an add-on to metformin in sufferers with kind 2 diabetes. Diabetes Obes. Metab. 23, 425–433 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pan, R. et al. Impact of SGLT-2 inhibitors on physique composition in sufferers with kind 2 diabetes mellitus: a meta-analysis of randomized managed trials. PLoS ONE 17, e0279889 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cefalu, W. T. et al. Efficacy and security of canagliflozin versus glimepiride in sufferers with kind 2 diabetes inadequately managed with metformin (CANTATA-SU): 52 week outcomes from a randomised, double-blind, part 3 non-inferiority trial. Lancet 382, 941–950 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ridderstrale, M. et al. Comparability of empagliflozin and glimepiride as add-on to metformin in sufferers with kind 2 diabetes: a 104-week randomised, active-controlled, double-blind, part 3 trial. Lancet Diabetes Endocrinol. 2, 691–700 (2014).

    Article 

    Google Scholar
     

  • Ferrannini, G. et al. Vitality steadiness after sodium-glucose cotransporter 2 inhibition. Diabetes Care 38, 1730–1735 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mayne, Okay. J. et al. Results of empagliflozin on fluid overload, weight and blood stress in power kidney illness. J. Am. Soc. Nephrol. 35, 202–215 (2023).

    Article 

    Google Scholar
     

  • Hollander, P. et al. Coadministration of canagliflozin and phentermine for weight administration in chubby and overweight people with out diabetes: a randomized medical trial. Diabetes Care 40, 632–639 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Frias, J. P. et al. Exenatide as soon as weekly plus dapagliflozin as soon as each day versus exenatide or dapagliflozin alone in sufferers with kind 2 diabetes inadequately managed with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, part 3, randomised managed trial. Lancet Diabetes Endocrinol. 4, 1004–1016 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, C., Luo, J., Jiang, M. & Wang, Okay. The efficacy and security of the mix remedy with GLP-1 receptor agonists and SGLT-2 inhibitors in kind 2 diabetes mellitus: a scientific assessment and meta-analysis. Entrance. Pharmacol. 13, 838277 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lundkvist, P. et al. Dapagliflozin as soon as each day plus exenatide as soon as weekly in overweight adults with out diabetes: sustained reductions in physique weight, glycaemia and blood stress over 1 12 months. Diabetes Obes. Metab. 19, 1276–1288 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rinella, M. E. et al. A multi-society Delphi consensus assertion on new fatty liver illness nomenclature. Hepatology 78, 1966–1986 (2023).

    Article 

    Google Scholar
     

  • Dufour, J. F. et al. Present therapies and new developments in NASH. Intestine 71, 2123–2134 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sinha, B., Datta, D. & Ghosal, S. Meta-analysis of the consequences of sodium glucose cotransporter 2 inhibitors in non-alcoholic fatty liver illness sufferers with kind 2 diabetes. JGH Open 5, 219–227 (2021).

    Article 

    Google Scholar
     

  • Shao, S. C., Kuo, L. T., Chien, R. N., Hung, M. J. & Lai, E. C. SGLT2 inhibitors in sufferers with kind 2 diabetes with non-alcoholic fatty liver ailments: an umbrella assessment of systematic critiques. BMJ Open Diabetes Res Care 8, e001956 (2020).

    Article 

    Google Scholar
     

  • Xing, B. et al. Results of sodium-glucose cotransporter 2 inhibitors on non-alcoholic fatty liver illness in sufferers with kind 2 diabetes: a meta-analysis of randomized managed trials. J. Diabetes Investig. 11, 1238–1247 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wei, Q., Xu, X., Guo, L., Li, J. & Li, L. Impact of SGLT2 inhibitors on kind 2 diabetes mellitus with non-alcoholic fatty liver illness: a meta-analysis of randomized managed trials. Entrance. Endocrinol. 12, 635556 (2021).

    Article 

    Google Scholar
     

  • Wong, C. et al. Sodium-glucose co-transporter 2 inhibitors for non-alcoholic fatty liver illness in Asian sufferers with kind 2 diabetes: a meta-analysis. Entrance. Endocrinol. 11, 609135 (2020).

    Article 

    Google Scholar
     

  • Taheri, H. et al. Impact of empagliflozin on liver steatosis and fibrosis in sufferers with non-alcoholic fatty liver illness with out diabetes: a randomized, double-blind, placebo-controlled trial. Adv. Ther. 37, 4697–4708 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tobita, H. et al. Comparability of dapagliflozin and teneligliptin in nonalcoholic fatty liver illness sufferers with out kind 2 diabetes mellitus: a potential randomized research. J. Clin. Biochem. Nutr. 68, 173–180 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Spiazzi, B. F. et al. Sodium-glucose cotransporter-2 inhibitors and most cancers outcomes: a scientific assessment and meta-analysis of randomized managed trials. Diabetes Res. Clin. Pract. 198, 110621 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kohler, S., Lee, J., George, J. T., Inzucchi, S. E. & Zinman, B. Bladder most cancers within the EMPA-REG OUTCOME trial. Diabetologia 60, 2534–2535 (2017).

    Article 

    Google Scholar
     

  • Tang, H. et al. SGLT2 inhibitors and danger of most cancers in kind 2 diabetes: a scientific assessment and meta-analysis of randomised managed trials. Diabetologia 60, 1862–1872 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Abrahami, D. et al. Sodium-glucose cotransporter 2 inhibitors and the short-term danger of bladder most cancers: a global multisite cohort research. Diabetes Care 45, 2907–2917 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hu, W. S. & Lin, C. L. Sufferers with diabetes with and with out sodium-glucose cotransporter-2 inhibitors use with incident most cancers danger. J. Diabetes Issues 37, 108468 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wu, W. et al. SGLT2 inhibitor prompts the STING/IRF3/IFN-β pathway and induces immune infiltration in osteosarcoma. Cell Loss of life Dis. 13, 523 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. SGLT2 inhibition restrains thyroid most cancers development through G1/S part transition arrest and apoptosis mediated by DNA harm response signaling pathways. Most cancers Cell Int. 22, 74 (2022).

    Article 

    Google Scholar
     

  • Jiang, D. & Ma, P. Canagliflozin, characterised as a HDAC6 inhibitor, inhibits gastric most cancers metastasis. Entrance. Oncol. 12, 1057455 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dutka, M. et al. SGLT-2 inhibitors in most cancers therapy – mechanisms of motion and rising new views. Cancers 14, 5811 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schietzel, S. et al. Influence of the SGLT2 inhibitor empagliflozin on urinary supersaturations in kidney stone formers (SWEETSTONE trial): protocol for a randomised, double-blind, placebo-controlled cross-over trial. BMJ Open 12, e059073 (2022).

    Article 

    Google Scholar
     

  • Balasubramanian, P. et al. Empagliflozin and decreased danger of nephrolithiasis: a possible new function for SGLT2 inhibition? J. Clin. Endocrinol. Metab. 107, e3003–e3007 (2022).

    Article 

    Google Scholar
     

  • Bailey, C. J. Uric acid and the cardio-renal results of SGLT2 inhibitors. Diabetes Obes. Metab. 21, 1291–1298 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Banerjee, M., Pal, R., Maisnam, I., Chowdhury, S. & Mukhopadhyay, S. Serum uric acid decreasing and results of sodium-glucose cotransporter-2 inhibitors on gout: a meta-analysis and meta-regression of randomized managed trials. Diabetes Obes. Metab. 25, 2697–2703 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Packer, M. Alleviation of anemia by SGLT2 inhibitors in sufferers with CKD: mechanisms and outcomes of long-term placebo-controlled trials. Clin. J. Am. Soc. Nephrol., https://doi.org/10.2215/CJN.0000000000000362 (2023).

    Article 

    Google Scholar
     

  • Singh, D. Okay., Winocour, P. & Farrington, Okay. Erythropoietic stress and anemia in diabetes mellitus. Nat. Rev. Endocrinol. 5, 204–210 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Okunrintemi, V., Mishriky, B. M., Powell, J. R. & Cummings, D. M. Sodium-glucose co-transporter-2 inhibitors and atrial fibrillation within the cardiovascular and renal consequence trials. Diabetes Obes. Metab. 23, 276–280 (2021).

    Article 
    CAS 

    Google Scholar
     

  • O’Hara, D. V. & Jardine, M. J. SGLT2 inhibitors could stop diabetes. Nat. Rev. Nephrol. 18, 203–204 (2022).

    Article 

    Google Scholar
     

  • Kosiborod, M. N. et al. Dapagliflozin in sufferers with cardiometabolic danger elements hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, part 3 trial. Lancet Diabetes Endocrinol. 9, 586–594 (2021).

    Article 
    CAS 

    Google Scholar
     

  • The RECOVERY Collaborative Group. Empagliflozin in sufferers admitted to hospital with COVID-19 (RECOVERY): a randomised, managed, open-label, platform trial. Lancet Diabetes Endocrinol. 11, 905–914 (2023).

    Article 

    Google Scholar
     

  • ESC Press Workplace. SGLT2 inhibitors not linked with improved survival in hospitalised COVID-19 sufferers: SGLT2 inhibitors in COVID-19 meta-analysis offered in a Sizzling Line session in the present day at ESC Congress 2023 European Society of Cardiology https://www.escardio.org/The-ESC/Press-Workplace/Press-releases/SGLT2-inhibitors-not-linked-with-improved-survival-in-hospitalised-COVID-19-patients (2023).

  • Thiruvenkatarajan, V. et al. Peri-colonoscopy implications of sodium-glucose cotransporter-2 inhibitor remedy: a mini-review of obtainable proof. Can. J. Diabetes 47, 287–291 (2023).

    Article 

    Google Scholar
     

  • Khunti, Okay. et al. Re-examining the widespread coverage of stopping sodium-glucose cotransporter-2 inhibitors throughout acute sickness: a perspective based mostly on the up to date proof. Diabetes Obes. Metab. 24, 2071–2080 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Raven, L. M., Muir, C. A. & Greenfield, J. R. Sodium glucose cotransporter 2 inhibitor-induced ketoacidosis is unlikely in sufferers with out diabetes. Med. J. Aust. 219, 293–294 (2023).

    Article 

    Google Scholar
     

  • Hayes, A. G., Raven, L. M., Viardot, A., Kotlyar, E. & Greenfield, J. R. SGLT2 inhibitor-induced ketoacidosis in a affected person with out diabetes. Diabetes Care 47, e4–e5 (2024).

    Article 

    Google Scholar
     

  • Duggan, A., Stewart, P. & Williams, D. Non-diabetic euglycaemic ketoacidosis secondary to SGLT2 inhibition. Coronary heart Lung Circ. 32, S167–S168 (2023).

    Article 

    Google Scholar
     

  • Vukadinović, D. et al. Unwanted side effects and therapy initiation limitations of sodium–glucose cotransporter 2 inhibitors in coronary heart failure: a scientific assessment and meta-analysis. Eur. J. Coronary heart Fail. 24, 1625–1632 (2022).

    Article 

    Google Scholar
     

  • Jardine, M. J. et al. Renal, cardiovascular, and security outcomes of canagliflozin by baseline kidney perform: a secondary evaluation of the CREDENCE randomized trial. J. Am. Soc. Nephrol. 31, 1128–1139 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Neuen, B. L., Jardine, M. J. & Perkovic, V. Sodium-glucose cotransporter 2 inhibition: which affected person with power kidney illness must be handled sooner or later? Nephrol. Dial. Transpl. 35, i48–i55 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, C. X. et al. Comparative security of various sodium-glucose transporter 2 inhibitors in sufferers with kind 2 diabetes: a scientific assessment and community meta-analysis of randomized managed trials. Entrance. Endocrinol. 14, 1238399 (2023).

    Article 

    Google Scholar
     

  • Kang, A. et al. P1013. Canagliflozin and danger of genital infections and urinary tract infections in individuals with diabetes mellitus and kidney illness – a post-hoc evaluation of the CREDENCE trial. Nephrol. Dial. Transpl. 35, gfaa142 (2020).


    Google Scholar
     

  • Engelhardt, Okay., Ferguson, M. & Rosselli, J. L. Prevention and administration of genital mycotic infections within the setting of sodium-glucose cotransporter 2 inhibitors. Ann. Pharmacother. 55, 543–548 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Results of SGLT2 inhibitors on UTIs and genital infections in kind 2 diabetes mellitus: a scientific assessment and meta-analysis. Sci. Rep. 7, 2824 (2017).

    Article 

    Google Scholar
     

  • Butt, J. H. et al. Coronary heart failure, peripheral artery illness, and dapagliflozin: a patient-level meta-analysis of DAPA-HF and DELIVER. Eur. Coronary heart J. 44, 2170–2183 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fralick, M. et al. Fracture danger after initiation of use of canagliflozin: a cohort research. Ann. Intern. Med. 170, 155–163 (2019).

    Article 

    Google Scholar
     

  • Patil, T., Prepare dinner, M., Hobson, J., Kaur, A. & Lee, A. Evaluating the security of sodium-glucose cotransporter-2 inhibitors in a nationwide Veterans Well being Administration observational cohort research. Am. J. Cardiol. 201, 281–293 (2023).

    Article 
    CAS 

    Google Scholar
     

  • McEwan, P. et al. Price-effectiveness of dapagliflozin as a therapy for power kidney illness: a health-economic evaluation of DAPA-CKD. Clin. J. Am. Soc. Nephrol. 17, 1730–1741 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Igarashi, A. et al. Price-effectiveness evaluation of initiating kind 2 diabetes remedy with a sodium-glucose cotransporter 2 inhibitor versus standard remedy in Japan. Diabetes Ther. 13, 1367–1381 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Johnston, R. et al. Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating kind 2 diabetes: systematic assessment and financial analysis. Well being Technol. Assess. 21, 1–218 (2017).

    Article 

    Google Scholar
     

  • Sabapathy, S. et al. Price-effectiveness of canagliflozin versus sitagliptin when added to metformin and sulfonylurea in kind 2 diabetes in Canada. J. Popul. Ther. Clin. Pharmacol. 23, e151–e168 (2016).


    Google Scholar
     

  • Gourzoulidis, G. et al. Price-effectiveness of empagliflozin for the therapy of sufferers with kind 2 diabetes mellitus at elevated cardiovascular danger in Greece. Clin. Drug Investig. 38, 417–426 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, E., Coleman, C. I., Nair, S. & Weeda, E. R. Price-utility of empagliflozin in sufferers with kind 2 diabetes at excessive cardiovascular danger. J. Diabetes Issues 32, 210–215 (2018).

    Article 

    Google Scholar
     

  • Mettam, S. R., Bajaj, H., Kansal, A. R. & Kandaswamy, P. Price effectiveness of empagliflozin in sufferers with T2DM and excessive CV danger in Canada. Worth Well being 19, A674 (2016).

    Article 

    Google Scholar
     

  • Daacke, I., Kandaswamy, P., Tebboth, A., Kansal, A. & Reifsnider, O. Price-effectiveness of empagliflozin (Jardiance) within the therapy of sufferers with kind 2 diabetes mellitus (T2DM) within the UK based mostly on EMPA-REG-OUTCOME knowledge. Worth Well being 19, A673 (2016).

    Article 

    Google Scholar
     

  • Reifsnider, O. S. et al. Price-effectiveness of empagliflozin in sufferers with diabetic kidney illness in america: findings based mostly on the EMPA-REG OUTCOME trial. Am. J. Kidney Dis. 79, 796–806 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jorissen, W., Annemans, L., Louis, N., Nilsson, A. & Willis, M. Well being financial modelling of diabetic kidney illness in sufferers with kind 2 diabetes handled with canagliflozin in Belgium. Acta Clin. Belg. 77, 945–954 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Willis, M. et al. Price-effectiveness of canagliflozin added to plain of look after treating diabetic kidney illness (DKD) in sufferers with kind 2 diabetes mellitus (T2DM) in England: estimates utilizing the CREDEM-DKD mannequin. Diabetes Ther. 12, 313–328 (2021).

    Article 

    Google Scholar
     

  • Tisdale, R. L. et al. Price-effectiveness of dapagliflozin for non-diabetic power kidney illness. J. Gen. Intern. Med. 37, 3380–3387 (2022).

    Article 

    Google Scholar
     

  • Kodera, S. et al. Price-effectiveness of dapagliflozin for power kidney illness in Japan. Circ. J. 86, 2021–2028 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Vareesangthip, Okay., Deerochanawong, C., Thongsuk, D., Pojchaijongdee, N. & Permsuwan, U. Price-utility evaluation of dapagliflozin as an add-on to plain of look after sufferers with power kidney illness in Thailand. Adv. Ther. 39, 1279–1292 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lim, A. H., Abdul Rahim, N., Zhao, J., Cheung, S. Y. A. & Lin, Y. W. Price effectiveness analyses of pharmacological remedies in coronary heart failure. Entrance. Pharmacol. 13, 919974 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gil-Rojas, Y., Lasalvia, P. & García, Á. Price-utility of dapagliflozin plus commonplace therapy in comparison with commonplace therapy for the administration of coronary heart failure with diminished ejection fraction in Colombia. Professional Rev. Pharmacoecon. Outcomes Res. 22, 655–663 (2022).

    Article 

    Google Scholar
     

  • Isaza, N. et al. Price-effectiveness of dapagliflozin for the therapy of coronary heart failure with diminished ejection fraction. JAMA Netw. Open 4, e2114501 (2021).

    Article 

    Google Scholar
     

  • Krittayaphong, R. & Permsuwan, U. Price-utility evaluation of add-on dapagliflozin therapy in coronary heart failure with diminished ejection fraction. Int. J. Cardiol. 322, 183–190 (2021).

    Article 

    Google Scholar
     

  • & Liao, C.-T. et al. Price-effectiveness analysis of add-on empagliflozin in sufferers with coronary heart failure and a diminished ejection fraction from the healthcare system’s perspective within the Asia–Pacific Area. Entrance. Cardiovasc. Med. 8, 750381 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liao, C.-T. et al. Price-effectiveness analysis of add-on dapagliflozin for coronary heart failure with diminished ejection fraction from perspective of healthcare methods in Asia–Pacific area. Cardiovasc. Diabetol. 20, 204 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mohammadnezhad, G., Azadmehr, B., Mirheidari, M. & Yousefi, N. Price-effectiveness evaluation of dapagliflozin within the administration of coronary heart failure with diminished ejection fraction (HFrEF): a scientific assessment. Price Eff. Resour. Alloc. 20, 62 (2022).

    Article 

    Google Scholar
     

  • Nguyen, B. N., Mital, S., Bugden, S. & Nguyen, H. V. Price-effectiveness of dapagliflozin and empagliflozin for therapy of coronary heart failure with diminished ejection fraction. Int. J. Cardiol. 376, 83–89 (2023).

    Article 

    Google Scholar
     

  • Parizo, J. T. et al. Price-effectiveness of dapagliflozin for therapy of sufferers with coronary heart failure with diminished ejection fraction. JAMA Cardiol. 6, 926–935 (2021).

    Article 

    Google Scholar
     

  • Reifsnider, O. S. et al. Price-effectiveness of empagliflozin within the UK in an EMPA-REG OUTCOME subgroup with kind 2 diabetes and coronary heart failure. Esc. Coronary heart Fail. 7, 3910–3918 (2020).

    Article 

    Google Scholar
     

  • Sang, H., Wan, Y., Ma, Z., Zhang, S. & Zhao, Q. Price-effectiveness of empagliflozin for the therapy of coronary heart failure with diminished ejection fraction in China. Entrance. Cardiovasc. Med. 9, 1022020 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cohen, L. P. et al. Price-effectiveness of sodium-glucose cotransporter-2 inhibitors for the therapy of coronary heart failure with preserved ejection fraction. JAMA Cardiol. 8, 419–428 (2023).

    Article 

    Google Scholar
     

  • International Well being & Inhabitants Challenge on Entry to Look after Cardiometabolic Ailments Increasing entry to newer medicines for individuals with kind 2 diabetes in low-income and middle-income international locations: a cost-effectiveness and value goal evaluation. Lancet Diabetes Endocrinol. 9, 825–836 (2021).

    Article 

    Google Scholar
     

  • The George Institute. The broader advantages of SGLT2 inhibitors. Well being TGIfG. https://www.georgeinstitute.org.au/our-impact/policy-and-recommendations/the-wider-benefits-of-sglt2-inhibitors 2021.

  • Mosenzon, O. et al. CAPTURE: a multinational, cross-sectional research of heart problems prevalence in adults with kind 2 diabetes throughout 13 international locations. Cardiovasc. Diabetol. 20, 154 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Arnold, S. V. et al. International use of SGLT2 inhibitors and GLP-1 receptor agonists in kind 2 diabetes. Outcomes from DISCOVER. BMC Endocr. Disord. 22, 111 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nargesi, A. A. et al. Up to date nationwide patterns of eligibility and use of novel cardioprotective antihyperglycemic brokers in kind 2 diabetes mellitus. J. Am. Coronary heart Assoc. 10, e021084 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Homosexual, H. C. et al. Comparability of sodium-glucose cotransporter-2 inhibitor and glucagon-like peptide-1 receptor agonist prescribing in sufferers with diabetes mellitus with and with out heart problems. Am. J. Cardiol. 189, 121–130 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ofori-Asenso, R. et al. Poor adherence and persistence to sodium glucose co-transporter 2 inhibitors in real-world settings: proof from a scientific assessment and meta-analysis. Diabetes Metab. Res. Rev. 37, e3350 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Luo, J. et al. Incidence and predictors of major nonadherence to sodium glucose co-transporter 2 inhibitors and glucagon-like peptide 1 agonists in a big built-in healthcare system. J. Gen. Intern. Med. 37, 3562–3569 (2022).

    Article 

    Google Scholar
     

  • Vardeny, O. & Vaduganathan, M. Sensible information to prescribing sodium-glucose cotransporter 2 inhibitors for cardiologists. JACC: Coronary heart Fail. 7, 169–172 (2019).


    Google Scholar
     

  • Essien, U. R. et al. Affiliation of prescription co-payment with adherence to glucagon-like peptide-1 receptor agonist and sodium-glucose cotransporter-2 inhibitor therapies in sufferers with coronary heart failure and diabetes. JAMA Netw. Open 6, e2316290 (2023).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments